(0) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

power(x', S(x)) → mult(x', power(x', x))
mult(x', S(x)) → add0(x', mult(x', x))
add0(x', S(x)) → +(S(0), add0(x', x))
power(x, 0) → S(0)
mult(x, 0) → 0
add0(x, 0) → x

The (relative) TRS S consists of the following rules:

+(x, S(0)) → S(x)
+(S(0), y) → S(y)

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

power(x', S(x)) → mult(x', power(x', x))
mult(x', S(x)) → add0(x', mult(x', x))
add0(x', S(x)) → +'(S(0'), add0(x', x))
power(x, 0') → S(0')
mult(x, 0') → 0'
add0(x, 0') → x

The (relative) TRS S consists of the following rules:

+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)

Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
power(x', S(x)) → mult(x', power(x', x))
mult(x', S(x)) → add0(x', mult(x', x))
add0(x', S(x)) → +'(S(0'), add0(x', x))
power(x, 0') → S(0')
mult(x, 0') → 0'
add0(x, 0') → x
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)

Types:
power :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
mult :: S:0' → S:0' → S:0'
add0 :: S:0' → S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
power, mult, add0

They will be analysed ascendingly in the following order:
mult < power
add0 < mult

(6) Obligation:

Innermost TRS:
Rules:
power(x', S(x)) → mult(x', power(x', x))
mult(x', S(x)) → add0(x', mult(x', x))
add0(x', S(x)) → +'(S(0'), add0(x', x))
power(x, 0') → S(0')
mult(x, 0') → 0'
add0(x, 0') → x
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)

Types:
power :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
mult :: S:0' → S:0' → S:0'
add0 :: S:0' → S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'

Generator Equations:
gen_S:0'2_1(0) ⇔ 0'
gen_S:0'2_1(+(x, 1)) ⇔ S(gen_S:0'2_1(x))

The following defined symbols remain to be analysed:
add0, power, mult

They will be analysed ascendingly in the following order:
mult < power
add0 < mult

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(+(1, n4_1)), rt ∈ Ω(1 + n41)

Induction Base:
add0(gen_S:0'2_1(1), gen_S:0'2_1(0)) →RΩ(1)
gen_S:0'2_1(1)

Induction Step:
add0(gen_S:0'2_1(1), gen_S:0'2_1(+(n4_1, 1))) →RΩ(1)
+'(S(0'), add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1))) →IH
+'(S(0'), gen_S:0'2_1(+(1, c5_1))) →RΩ(0)
S(gen_S:0'2_1(+(1, n4_1)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
power(x', S(x)) → mult(x', power(x', x))
mult(x', S(x)) → add0(x', mult(x', x))
add0(x', S(x)) → +'(S(0'), add0(x', x))
power(x, 0') → S(0')
mult(x, 0') → 0'
add0(x, 0') → x
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)

Types:
power :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
mult :: S:0' → S:0' → S:0'
add0 :: S:0' → S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'

Lemmas:
add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(+(1, n4_1)), rt ∈ Ω(1 + n41)

Generator Equations:
gen_S:0'2_1(0) ⇔ 0'
gen_S:0'2_1(+(x, 1)) ⇔ S(gen_S:0'2_1(x))

The following defined symbols remain to be analysed:
mult, power

They will be analysed ascendingly in the following order:
mult < power

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1)) → gen_S:0'2_1(n487_1), rt ∈ Ω(1 + n4871 + n48712)

Induction Base:
mult(gen_S:0'2_1(1), gen_S:0'2_1(0)) →RΩ(1)
0'

Induction Step:
mult(gen_S:0'2_1(1), gen_S:0'2_1(+(n487_1, 1))) →RΩ(1)
add0(gen_S:0'2_1(1), mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1))) →IH
add0(gen_S:0'2_1(1), gen_S:0'2_1(c488_1)) →LΩ(1 + n4871)
gen_S:0'2_1(+(1, n487_1))

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
power(x', S(x)) → mult(x', power(x', x))
mult(x', S(x)) → add0(x', mult(x', x))
add0(x', S(x)) → +'(S(0'), add0(x', x))
power(x, 0') → S(0')
mult(x, 0') → 0'
add0(x, 0') → x
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)

Types:
power :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
mult :: S:0' → S:0' → S:0'
add0 :: S:0' → S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'

Lemmas:
add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(+(1, n4_1)), rt ∈ Ω(1 + n41)
mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1)) → gen_S:0'2_1(n487_1), rt ∈ Ω(1 + n4871 + n48712)

Generator Equations:
gen_S:0'2_1(0) ⇔ 0'
gen_S:0'2_1(+(x, 1)) ⇔ S(gen_S:0'2_1(x))

The following defined symbols remain to be analysed:
power

(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
power(gen_S:0'2_1(1), gen_S:0'2_1(n780_1)) → gen_S:0'2_1(1), rt ∈ Ω(1 + n7801)

Induction Base:
power(gen_S:0'2_1(1), gen_S:0'2_1(0)) →RΩ(1)
S(0')

Induction Step:
power(gen_S:0'2_1(1), gen_S:0'2_1(+(n780_1, 1))) →RΩ(1)
mult(gen_S:0'2_1(1), power(gen_S:0'2_1(1), gen_S:0'2_1(n780_1))) →IH
mult(gen_S:0'2_1(1), gen_S:0'2_1(1)) →LΩ(3)
gen_S:0'2_1(1)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(14) Complex Obligation (BEST)

(15) Obligation:

Innermost TRS:
Rules:
power(x', S(x)) → mult(x', power(x', x))
mult(x', S(x)) → add0(x', mult(x', x))
add0(x', S(x)) → +'(S(0'), add0(x', x))
power(x, 0') → S(0')
mult(x, 0') → 0'
add0(x, 0') → x
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)

Types:
power :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
mult :: S:0' → S:0' → S:0'
add0 :: S:0' → S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'

Lemmas:
add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(+(1, n4_1)), rt ∈ Ω(1 + n41)
mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1)) → gen_S:0'2_1(n487_1), rt ∈ Ω(1 + n4871 + n48712)
power(gen_S:0'2_1(1), gen_S:0'2_1(n780_1)) → gen_S:0'2_1(1), rt ∈ Ω(1 + n7801)

Generator Equations:
gen_S:0'2_1(0) ⇔ 0'
gen_S:0'2_1(+(x, 1)) ⇔ S(gen_S:0'2_1(x))

No more defined symbols left to analyse.

(16) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1)) → gen_S:0'2_1(n487_1), rt ∈ Ω(1 + n4871 + n48712)

(17) BOUNDS(n^2, INF)

(18) Obligation:

Innermost TRS:
Rules:
power(x', S(x)) → mult(x', power(x', x))
mult(x', S(x)) → add0(x', mult(x', x))
add0(x', S(x)) → +'(S(0'), add0(x', x))
power(x, 0') → S(0')
mult(x, 0') → 0'
add0(x, 0') → x
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)

Types:
power :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
mult :: S:0' → S:0' → S:0'
add0 :: S:0' → S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'

Lemmas:
add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(+(1, n4_1)), rt ∈ Ω(1 + n41)
mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1)) → gen_S:0'2_1(n487_1), rt ∈ Ω(1 + n4871 + n48712)
power(gen_S:0'2_1(1), gen_S:0'2_1(n780_1)) → gen_S:0'2_1(1), rt ∈ Ω(1 + n7801)

Generator Equations:
gen_S:0'2_1(0) ⇔ 0'
gen_S:0'2_1(+(x, 1)) ⇔ S(gen_S:0'2_1(x))

No more defined symbols left to analyse.

(19) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1)) → gen_S:0'2_1(n487_1), rt ∈ Ω(1 + n4871 + n48712)

(20) BOUNDS(n^2, INF)

(21) Obligation:

Innermost TRS:
Rules:
power(x', S(x)) → mult(x', power(x', x))
mult(x', S(x)) → add0(x', mult(x', x))
add0(x', S(x)) → +'(S(0'), add0(x', x))
power(x, 0') → S(0')
mult(x, 0') → 0'
add0(x, 0') → x
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)

Types:
power :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
mult :: S:0' → S:0' → S:0'
add0 :: S:0' → S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'

Lemmas:
add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(+(1, n4_1)), rt ∈ Ω(1 + n41)
mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1)) → gen_S:0'2_1(n487_1), rt ∈ Ω(1 + n4871 + n48712)

Generator Equations:
gen_S:0'2_1(0) ⇔ 0'
gen_S:0'2_1(+(x, 1)) ⇔ S(gen_S:0'2_1(x))

No more defined symbols left to analyse.

(22) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1)) → gen_S:0'2_1(n487_1), rt ∈ Ω(1 + n4871 + n48712)

(23) BOUNDS(n^2, INF)

(24) Obligation:

Innermost TRS:
Rules:
power(x', S(x)) → mult(x', power(x', x))
mult(x', S(x)) → add0(x', mult(x', x))
add0(x', S(x)) → +'(S(0'), add0(x', x))
power(x, 0') → S(0')
mult(x, 0') → 0'
add0(x, 0') → x
+'(x, S(0')) → S(x)
+'(S(0'), y) → S(y)

Types:
power :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
mult :: S:0' → S:0' → S:0'
add0 :: S:0' → S:0' → S:0'
+' :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_1 :: S:0'
gen_S:0'2_1 :: Nat → S:0'

Lemmas:
add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(+(1, n4_1)), rt ∈ Ω(1 + n41)

Generator Equations:
gen_S:0'2_1(0) ⇔ 0'
gen_S:0'2_1(+(x, 1)) ⇔ S(gen_S:0'2_1(x))

No more defined symbols left to analyse.

(25) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) → gen_S:0'2_1(+(1, n4_1)), rt ∈ Ω(1 + n41)

(26) BOUNDS(n^1, INF)